
MATITK:
Extending MATLAB with ITK

Vincent Chu (vwchu@sfu.ca)
Ghassan Hamarneh (hamarneh@cs.sfu.ca)

Simon Fraser University, British Columbia, Canada.

This document only covers the usage of MATITK. For additional information about the
MATITK project, please visit the official SFU project page.

I. USAGE

To use the wrapper, MATLAB must be able to locate the matitk.dll1. This usually means
the current working directory of MATLAB should be set to the location of matitk.dll.
Copy matitk.dll to the desired location, launch MATLAB and set search path of MATLAB
or change current directory to the location of the DLL.

For help information, type matitk('?') in MATLAB’s command window.
To list out the filtering, segmentation and registration methods implemented in MATITK,
type matitk('f'), matitk('s') and matitk('r')2 respectively. The opcodes listed are used
to invoke the MATITK method.

In MATLAB, calls to MATITK methods would generally take the following format:

matitk(operationName,[parameters],[inputArray1],[inputArray2],[seed(s)Array],[I
mage(s)Spacing])

Legend:

1. The first argument to matitk, operationName, specifies the opcode of the
implemented ITK method to be invoked.

2. The second argument to matitk, parameters, specifies the required parameters of
the ITK method to be invoked (specified by operationName). To find out what
parameters are required for a particular method, type matitk(operationName);

3. The third and fourth arguments to matitk, inputArray1 and inputArray2, specify
the input image volume. They must be three dimensional and contain double, float,
unsigned char or signed integer data type elements. In the case where a second
image volume is not required for the method being invoked, provide [] as the fourth
argument.

1 This assumes MATITK is being run on Windows platform. This can be .so file when MATITK is being run
on Linux machines.
2 Alternatively, matitk ?, matitk f, matitk s, and matitk r can be typed instead.

4. The fifth argument seedsArray arguments specify the seed points (in MATLAB
coordinate system) in the following order: [x1, y1, z1, x2, y2, z2, …, xn, yn, zn].
Because it is three dimensional, the number of elements in seedsArray should be a
multiple of three. In the case where seeding is not required for the method being
invoked, provide [] as the fifth argument.

5. The last optional argument specifies the spacing of the supplied image volume. The
performance of certain ITK methods may be affected by the spacing. If this
argument is omitted, an isotropic spacing of [1,1,1] is assumed.

II. EXAMPLE

To demonstrate the functionality of MATITK, we first load the sample built-in 3D brain mri
image from MATLAB. The loaded image will automatically be stored inside the variable D.

>> load mri;
>> D=squeeze(D);

We can use the following commands to visualize an axial brain slice (Figure 1):
subplot(131);imagesc(squeeze(D(:,:,round(end/2))));axis image; colormap gray
subplot(132);imagesc(squeeze(D(:,round(end/2),:)));colormap gray
subplot(133);imagesc(squeeze(D(round(end/2),:,:)));colormap gray
set(gcf,'position',[364 628 743 320])

Figure 1: (Left to right) Visualizing an axial, sagittal, and coronal brain slice of the sample image D.

The data type of the loaded image is unsigned char. As such, we would like to use the
double data type version of MATITK, and we first convert the input using double(D).
matitk(‘f’) is invoked to show the list of implemented filtering methods and the
corresponding opcode.

FCA is the opcode for CurvatureAnisotropicDiffusionImageFilter
The data type of the loaded image is unsigned char. As such, we would like to use the
double data type version of MATITK, and we first convert the input using double(D).
matitk(‘f’) is invoked to show the list of implemented filtering methods and the
corresponding opcode.

FCA is the opcode for CurvatureAnisotropicDiffusionImageFilter. matitk(‘fca’)
can be used to list out the arguments required for using
CurvatureAnisotropicDiffusionImageFilter (i.e. numberOfIterations, timeStep and
conductance). For the example, we chose our arguments to be 5, 0.0625 and 3 respectively
in this order, and supply the arguments as an array:

>> b=matitk('FCA',[5 0.0625 3], double(D));
Image input of type double detected, executing MATITK in double mode

FCA is being executed...
FCA has completed.

We can use the following commands to visualize the filtering result (Figure 2):
imagesc(squeeze(b(:,:,15)));

Figure 2: Visualizing sample image D after “FCA” operation.

The operation is performed in double data-type mode.

We apply ConfidenceConnectedImageFilter to the resulting filtered image (Figure 3).
The following example illustrates how the seed point (102, 82, 25) is supplied as an argument:

>> c= matitk('SCC',[1.4 10 255],double(b),double([]),[102 82 25]);
Image input of type double detected, executing MATITK in double mode

SCC is being executed...
SCC has completed.

Figure 3: Visualizing sample image D after “FCA” and “SCC” operation.

(Left to right) Axial slice, sagittal, and coronal brain slices.
The operations are performed in double data-type mode.

Instead of invoking the “double” version of ConfidenceConnectedImageFilter, we
could first cast b into unsigned char first. The unsigned char version of
ConfidenceConnectedImageFilter will be invoked as a result (Figure 4):

>> c=matitk('SCC',[1.4 10 255],uint8(b),uint8([]),[102 82 25]);
Image input of type unsigned char detected, executing MATITK in
unsigned char mode

SCC is being executed...
SCC has completed.

Figure 4: Visualizing sample image D after “FCA” and “SCC” operation.

The operations are performed in unsigned char data-type mode.

Notice how casting can affect the final result.

For another illustration, we apply GradientMagnitudeImageFilter to the original image
D of type unsigned char (Figure 5). Notice the unsigned char version of ITK method will be
used:

>> G=matitk('FGM',[],D);
Image input of type unsigned char detected, executing MATITK in
unsigned char mode

FGM is being executed...
FGM has completed.

Figure 5: Visualizing sample image D after “FGM” operation.

(Left to right) Axial, sagittal, and coronal brain slices.
The operations are performed in double data-type mode.

MATITK also supports receiving multiple outputs from ITK methods. The resulting
images of invoking OtsuMultipleThresholdImageFilter will be stored in variables O1,
O2, and O3 (Figure 6):

[O1,O2,O3]=matitk ('fomt',[3,128],D);
Image input of type unsigned char detected, executing MATITK in
unsigned char mode

fomt is being executed...
fomt has completed.

Figure 6: Visualizing the three outputs of “FOMT” operation.

Figure 7: A slice of the cube before (left) and after (right) applying Thin Plate Spline Warping
(“RTPS”) operation.

To illustrate how warping can be applied using MATITK, consider warping a cube according
to the following landmarks:

Source Target
x y z x y z
10 10 10 12 12 13
10 10 20 11 13 22
10 20 10 12 23 11
10 20 20 12 21 21
20 10 10 20 11 12
20 10 20 22 10 23
20 20 10 20 21 11
20 20 20 20 23 21

The source landmarks correspond to the edges of the cube, and the target landmarks
correspond to randomly generated points close to the original edges.

A=zeros(30,30,30);
A(10:20,10:20,10:20)=1;
output=matitk ('rtps',[],A,A,[10 10 10 12 12 13 10 10 20 11 13 22 10 20
10 12 23 11 10 20 20 12 21 21 20 10 10 20 11 12 20 10 20 22 10 23 20 20
10 20 21 11 20 20 20 20 23 21]);
Image input of type double detected, executing MATITK in double mode

rtps is being executed...
rtps has completed.

The result of execution is shown in (Figure 7).

III. AVAILABLE OPERATIONS (OPCODE)

As of version 2.4.04 released on Aug 24 2006, the following table lists the operations are
available.

Opcode Method
FAAB AntiAliasBinaryImageFilter
FBB BinomialBlurImageFilter
FBD BinaryDilateFilter
FBE BinaryErodeFilter
FBL BilateralFilter
FBT BinaryThresholdImageFilter
FCA CurvatureAnsioFilter
FCF CurvatureFlowFilter
FD DerivativeImageFilter
FDG DiscreteGaussianImageFilter
FDM DanielssonDistanceMapImageFilter
FDMV DanielssonDistanceMapImageFilterGetVoronoiMap
FF FlipImageFilter
FFFT FFTImageFilter
FGA GaussianFilter
FGAD GradientAnisotropicDiffusionImageFilter
FGM GradientMagnitudeFilter
FGMRG GradientMagnitudeRecursiveGaussianImageFilter
FGMS GradientMagnitudeWithSmoothingFilter
FLS LaplacianRecursiveGaussianImageFilter
FMEAN MeanImageFilter
FMEDIAN MedianImageFilter
FMMCF MinMaxCurvatureFlowFilter
FOMT OtsuMultipleThresholdImageFilter
FSN SigmoidNonlinearMappingFilter
FVBIH VotingBinaryIterativeHoleFillingImageFilter
FVMI VesselnessMeasureImageFilter
FRG RecursiveGaussianImageFilter

The following segmentation functions are implemented:
Opcode Method
SCC ConfidenceConnectedSegmentation
SCSS CellularSegmentationSegmentation(Debug)
SCT ConnectedThresholdSegmentation
SFM FastMarchSegmentation
SGAC GeodesicActiveContourLevelSetSegmentation
SIC IsolatedConnectedSegmentation
SLLS LaplacianLevelSetLevelSetSegmentation
SNC NeighbourhoodConnectedSegmentation
SOT OtsuThresholdSegmentation
SSDLS ShapeDetectionLevelSetFilter
SWS WatershedSegmentation

The following registration functions are implemented:
Opcode Method
RD registerDemon
RTPS registerThinPlateSpline

For documentation on each method, simply types its corresponding opcode in MATITK
prompt.

e.g. matitk ('rtps') would give:

rtps is being executed...

***********Begin description of registerThinPlateSpline(rtps)***********

 ThinPlateSplineKernelTransform
 This class defines the thin plate spline (TPS) transformation.
 It is implemented in as straightforward a manner as possible from
 the IEEE TMI paper by Davis, Khotanzad, Flamig, and Harms,
 Vol. 16 No. 3 June 1997

 Transforms
***************************End description***************************

You must supply parameters for this function in an array, with the elements in this order:

0 parameters must be supplied. You supplied 0.
??? Correct number of parameters must be supplied. At least one image volume has to be
supplied.

